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NOMENCLATURE
I dimensionless stream function;
F, stream function;
d, gravitational acceleration;
Pr,  Prandtl number;
Q, dimensionless heat flux;
T, temperature;
u, x velocity ;

v, y velocity ;
x,y, axial and normal distance coordinates.

Greek symbols

B, coefficient of thermal expansion;

B, dimensionless wall temperature parameter;
7 dimensionless blowing rate;

AT, temperature difference (= T, — T,);

", dimensionless normal coordinate;

8, dimensionless temperature;

v, kinematic viscosity ;
&, dimensionless streamwise coordinate ;
T, dimensionless shear stress;
v, stream function.
Subscripts
w, wall;
oc, ambient.

INTRODUCTION

FREE convection with mass transfer at the wall has been
studied by many authors in the past. Eichhorn [1] reported
similarity solutions to the boundary layer equations for the
case of free convection along a vertical flat plate with blowing
or suction at the wall For the case of constant wall
temperature with uniform blowing, where similarity solutions
are not possible, Sparrow and Cess [ 2] provided approximate
series solutions, Merkin [3] and Parikh et al. [4] used finite
difference techniques to solve the nonsimilar boundary layer
equations and more recently Minkowycz and Sparrow {5],
using the local nonsimilarity method, presented solutions for
a wide range of Prandtl numbers. Clarke [6], allowing for
variable density, calculated the induced outer flow for
similarity blowing at the wall. Kao et al. [7] presented
solutions for free convection along a vertical plate with
arbitrary wall temperature variations in the absence of mass
transfer at the wall.

In this note we present a transformation of the laminar
boundary layer equations, similar to the one of Kao et al.,
which allows arbitrary distributions of both wall temperature
and blowing. The procedure yields constant boundary con-
ditions, but variable coefficients appear in the differential
equations. The transformed equations can be solved using a
variety of techniques. Here we present only the local simi-
larity solutions as a general case and as a first approximation
to the solution to the full problem since our main purpose

here is simply to make known the transformation.

The impetus for our seeking such a transformation stems
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from our interest in the downward burning of vertical pieces
of condensed-phase combustibles. For flames propagating
over solid combustibles, the surface temperature varies along
the direction of spread. Solid vaporization occurs by a kinetic
law of the Arrhenius type, rather than by maintenance of
evaporative equilibrium that occurs for liquid fuels, so that
the blowing rate is in part determined by the surface
temperature distribution.

ANALYSIS AND RESULTS

The problem is governed by the usual constant property
boundary layer equations with the Boussinesq body-force
term in the x-momentum equation. We take u and v to be the
xand y velocity components and T as the temperature. At the
surface of the plate, where y = 0, u is zero, vis v (x}and T is
T.(x). For y large, u is zero and the temperature is equal to the
constant ambient value, T, , which we take to be less than
T.{x) so that the fluid flow is in the positive x direction.

Continuity is satisfied by the introduction of a stream
function, ¢, and we introduce the following transformations
to incorporate the boundary conditions in the boundary layer
equations:
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These transformations reduce the boundary layer equations
to:
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The boundary conditions become:
F€,0)=1(,0)=f(& o) =6(,0)=0,
0(¢,0) = 1.

In equations (1), (2) and (3) the prime notation denotes
differentiation with respect to #, § is the volume coefficient of
expansion, g is the acceleration of gravity, v is the kinematic
viscosity and Pr is the Prandt] number. In equation (2) x is to
be interpreted as the function of ¢ defined by the integral
relationship written for ¢ in equation (1). The differential
equations for fand 6 reduce to those of Kao et al. for j equal to
zero and to those of Eichhorn under similarity conditions.
Data for a specific problem of interest are contained in the
parameters i‘::nd 7 rather than in the boundary conditions.

The local similarity solution, in the form of wall shear stress
and heat transfer rate, to equations (2) and (3) for a Prandtl
number of 0.7 and various values of f and 7 is given in Table 1.
In this approximation, valid at small &, the right-hand side of
the differential equations for f and 0 is dropped, and the
resulting ordinary differential equations, along with the
boundary conditions, are solved with f, § and Pr as para-
meters. To solve the equations we used the shooting tech-
nique described by Nachtsheim and Swigert [8].

Asan example of how results such as those in Table 1 might
be used, consider the case of an isothermal wall with uniform
blowing, the problem previously considered by Merkin [3].
From equation (2) we get

(€)

B=0o,
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where AT= (T, — T,), a constant. The local heat transfer
rate and skin friction can now be expressed in terms of the
dimensionless parameters:
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FiG. 1. Free convection on an isothermal plate with uniform
blowing.
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These parameters and the notation are the ones used by
Merkin [3] in his numerical solution, and our § corresponds
to his dimensionless streamwise coordinate. Values of 8'(0)
and f"(0) were recomputed for Pr = 1, and the resuits are
plotted, along with those from [3], in Fig. 1. The local
similarity solution approximates the numerical solution quite
well and is somewhat better than the series solution.

It is interesting to note in Table 1 that at high negative
values of §, combined with high values of 7, the surface heat
flux is negative, i.e. to the plate rather than from it. Physically
this occurs when the surface temperature falls so rapidly in the
flow direction that the fluid convected along the wall is at a
higher temperature than the wall at that x-location. The
extent to which such a local similarity prediction is correct
depends on the smallness of £ and the applicability of the
boundary layer equations themselves.

CONCLUSION

The simple transformations introduced by Kao et al. [7],
which lead to constant boundary conditions, can be extended
to include the effect of variable blowing rate at the wall.
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