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f; dimensionless stream function ; 
F, stream function ; 
9, gravitational acceleration: 
Pr, Prandtl number; 
Q> dimensionless heat flux ; 
T, temperature; 
u, x velocity ; 
c 
iY, 

y velocity ; 
axial and normal distance coordinates 

Greek symbols 

coefficient of thermal expansion; 
dimensionless wall temperature parameter ; 
dimensionless blowing rate ; 
temperature difference (= T, - T, ); 
dimensionl~s normal coordinate; 
dimensionless temperature; 
kinematic viscosity ; 
dimensionless streamwise coordinate: 
dimensionless shear stress ; 
stream function. 

Subscripts 

w, wall; 
=, ambient. 

INTRODUCTION 

FREE convection with mass transfer at the wall has been 
studied by many authors in the past. Eichhorn [1] reported 
similarity solutions to the boundary layer equations for the 
case of free convection along a vertical flat plate with blowing 
or suction at the wall. For the case of constant wail 
temperature with uniform blowing, where similarity solutions 
are not possible, Sparrow and Cess [Z] provided approximate 
series solutions, Merkin [3] and Parikh et al. [4] used finite 
difference techniques to solve the nonsimilar boundary layer 
equations and more recently Minkowycz and Sparrow [5], 
using the local nonsimilarity method, presented solutions for 
a wide range of Prandtl numbers. Clarke [6], allowing for 
variable density, calculated the induced outer flow for 
similarity blowing at the wall. Kao et ai. [7] presented 
solutions for free convection along a vertical plate with 
arbitrary wall temperature variations in the absence of mass 
transfer at the wall. 

In this note we present a transformation of the laminar 
boundary layer equations, similar to the one of Kao et ui., 
which allows arbitrary distributions of both wail temperature 
and blowing. The procedure yields constant boundary con- 
ditions, but variable coefficients appear in the differential 
equations. The transformed equations can be solved using a 
variety of techniques. Here we present only the local simi- 
larity solutions as a general case and as a first approximation 
to the solution to the full problem since our main purpose 

here is simply to make known the t~~nsformatjon. 
The impetus for our seeking such a transformation stems 

from our interest in the downward burning of vertical pieces 
of condensed-phase combustibles. For flames propagating 
over solid combustibles, the surface temperature varies along 
the direction ofspread. Solid vaporization occurs by a kinetic 
law of the Arrhenius type, rather than by maintenance of 
evaporative equilibrium that occurs for liquid fuels, so that 
the blowing rate is in part determined by the surface 

tem~rature distributjon. 

ANALYSIS .ANll RESULTS 

The problem is governed by the usual constant property 
boundary layer equations with the Boussinesq body-force 
term in the .x-momentum equation. We take u and F to be the 
x and JJ velocity componen ts and T as the temperature. At the 
surface of the plate, where _r = 0, u is zero, c is v,(x) and T is 
T,(X). For y large, u is zero and the temperature is equal to the 
constant ambient value, T, . which we take to be less than 
7;,.(x) so that the fluid flow is in the positive .Y direction 

Continuity is satisfied by the introduction of a stream 
function, $, and we introduce the following transformations 
to incorporate the boundary conditions jn the boundary layer 
equations : 

i = - r’t:,(x)d.x + F(.x~J, 
* 0 

F = v(4r)3’jf(sc,~)P-“(r*(l) - 7,) ~“2. 

R(5%V) = (T- r, )/V,(X) - T, ), 

These t~dnsformations reduce the boundary layer equattons 
to : 
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The boundary conditions become : heat transfer rate 

f’(T, 0) =A& 0) = f’(5, Jj) = w, 0) = 0. 
(3) 

.9(&O) = 1. 

In equations (I), (2) and (3) the prime notation denotes 
differentiation with respect to q, B is the volume coefficient of 
expansion, g is the acceleration of gravity, v is the kinematic 
viscosity and Pr is the Prandtl number. In equation (2) x is to 
be interpreted as the function of < defined by the integral 
relationship written for 5 in equation (1). The differential 
equations forfand 0 reduce to those of Kao et al. for y”equa1 to 
zero and to those of Eichhorn under similarity conditions. 
Data for a s 

8” 
ific problem of interest are contained in the 

parameters and 7 rather than in the boundary conditions. 
The local similarity solution, in the form of wall shear stress 

skin friction 

“, au 
5 =-- 

y gSA’J-G y-o 

= i;f”(O,. 

and heat transfer rate, to equations (2) and (3) for a Prandtl 
number of 0.7 and various values of fl and 7 is given in Table 1. 
In this approximation, valid at small 5, the right-hand side of 
the differential equations for f and 0 is dropped, and the 
resulting ordinary differential equations, along with the 
boundary conditions, are solved with /f, 7 and Pr as para- 
meters. To solve the equations we used the shooting tech- 
nique described by Nachtsheim and Swigert [8]. 

These parameters and the notation are the ones used by 
Merkin [3] in his numerical solution, and our 7 corresponds 
to his dimensionless streamwise coordinate. Values of 8’(O) 
andf”(0) were recomputed for Pr = 1, and the results are 
plotted, along with those from [3], in Fig. 1. The local 
similarity solution approximates the numerical solution quite 
well and is somewhat better than the series solution. 

As an example of how results such as those in Table 1 might 
be used, consider the case of an isothermal wall with uniform 
blowing, the problem previously considered by Merkin [3]. 
From equation (2) we get 

It is interesting to note in Table 1 that at high negative 
values of B, combined with high values of j, the surface heat 
flux is negative, i.e. to the plate rather than from it. Physically 
this occurs when the surface temperature falls so rapidly in the 
flow direction that the fluid convected along the wall is at a 
higher temperature than the wall at that x-location. The 
extent to which such a local similarity prediction is correct 
depends on the smallness of 5 and the applicability of the 
boundary layer equations themselves. 

B = 0, 
(4) 

where AT= (T, - T,), a constant. The local heat transfer 
rate and skin friction can now be expressed in terms of the 
dimensionless parameters : 

-c- Asymptotic T,,, 

i REFERENCES 

0 05 IO 1.5 20 2.5 

Frc;. 1. Free convection on an isothermal plate with uniform 
blowing. 

CONCLUSION 

The simple transformations introduced by Kao et ul. [7]. 
which lead to constant boundary conditions, can be extended 
to include the effect of variable blowing rate at the wall. 
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